"C2-ACYLIERUNG" EINIGER N-HETEROAROMATISCHER RINGSYSTEME

Ernst Anders*, Hans-Günter Boldt, Renate Fuchs und Thomas Gaßner Institut für Organische Chemie der Universität Erlangen-Nürnberg, Henkestraße 42, D-8520 Erlangen

Summary: Several N-heteroaromatic ring systems can be regioselectively substituted with RCO- or ROCO-groups in the C2 position by reaction of the salts $\underline{4}$ with sodium-bis(trimethylsilyl)amide ($\underline{5}$).

Nachdem die Friedel-Crafts-Acylierung von N-heteroaromatischen Ringsystemen (Pyridin, Isochinolin) nicht möglich ist 1), werden zur Herstellung von z.B. 2-acylierten Derivaten dieser Substanzklassen zahlreiche und prinzipiell sehr unterschiedliche Verfahren angewandt. Stellvertretend sei hierzu die Synthese des 2-Benzoylpyridins (6a) aus der Vorstufe 2-Benzylpyridin durch Kaliumpermanganatoxidation 2) sowie die Herstellung von Fusarinsäurederivaten erwähnt, die aus 3-Acylpyridinen und Formamid unter radikalischen Bedingungen (Minisci-Reaktion 3) sowie einer sich anschließenden Wolf-Kishner-Reduktion synthetisierbar sind 4).

Wir berichten hier über eine Methode, die die Einführung der Arylcarbonyl- bzw. der Alkyloxycarbonylgruppe in die C2-Position einiger N-Heteroaromaten ermöglicht. Sie beruht auf der Verwendung der aus Arencarbonsäurechloriden bzw. Chlor-ameisensäurealkylestern $\underline{1}$, Aldehyden $\underline{2}$ und N-Heteroaromaten $\underline{3}$ leicht herstellbaren Salze $\underline{4}$ 5,6) (Gl. (1), Tab. 1):

Die Salze $\underline{4}$ werden bei -80°C in THF mit der doppelten molaren Menge Natriumbis(trimethylsilyl) amid ($\underline{5}$) umgesetzt $\underline{8}$), nach 2 h lassen sich die Substitutionsprodukte $\underline{6}$ entsprechend den Angaben in Tab. 1 isolieren $\underline{9}$). Wie an den Beispielen der Herstellung von $\underline{6}\underline{a}$ und $\underline{6}\underline{b}$ gezeigt wird, läßt sich die Ausbeute an Produkten $\underline{6}$ durch die Verlängerung der Reaktionszeit deutlich steigern.

Tab. 1. N-Aryliumsalze $\underline{\underline{4}}$ und Ketone bzw. Ester $\underline{\underline{6}}$

4	R ¹	R ²	Ausb. % a)	€ b)	Ausb. % c)	Fp bzw. Kp/Torr °C	in <u>4</u> u. <u>6</u>
a =	с ₆ н ₅	с ₆ н ₅	89	a =	35, 63 ^{d)}	40-43 95/0.2 (133/2 ²⁾)	N Q
₽	с ₂ н ₅ о	р-СH ₃ С ₆ H ₄	47	₫	31, 60 d)	45/0.1 (241-243/760 ^{10a)})	N
Ē	с ₆ н ₅	p-CH ₃ C ₆ H ₄	87	Ē	34	75 (76–77 ^{10b)})	N
₫	с ₆ н ₅	p-CH ₃ C ₆ H ₄	72	₫	22	95/0.0 5 (145/0.1 10c)	N -CH 3

a) Ausbeute bezogen auf $\underline{1}$, b) R^1 in $\underline{6}$ entspricht R^1 in $\underline{4}$, c) nach 2 h bei -80°C in THF,

d) nach 60 h.

Nicht zuletzt begründet durch die hohe Regioselektivität ¹¹⁾ dieser zu 6 führenden Deprotonierungsreaktion (Gl. (2)) nehmen wir an, daß der komplexe Reaktionsverlauf durch die Entstehung der Ylide des Typs 7 eingeleitet wird und die bisher nicht auszuschließende Bildung der Ylide 8 von untergeordneter Bedeutung ist.

 $R^{2} \xrightarrow{H + N}_{0} \xrightarrow{R^{1}}_{0} \qquad \qquad R^{2} \xrightarrow{+ N}_{0} \xrightarrow{R^{1}}_{0}$

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Förderung.

Literatur und Fußnoten:

- 1) A. Albert: "Heterocyclic Chemistry", The Athlone Press, London (1968).
- 2) E.H. Huntress und H.C. Walter, J. Am. Chem. Soc. 70, 3702 (1948).
- B) F. Minisci, Synthesis 1973, 1.
- 4) E. Langhals, H. Langhals und C. Rüchardt, Liebigs Ann. Chem. 1982, 930.
- 5) H.E. French und R. Adams, J. Am. Chem. Soc. 43, 651 (1921).
- 6) E. Anders und T. Gaßner, Angew. Chem. 94, 292 (1982); Angew. Chem., Int. Ed. Engl. 21, 289 (1982); Angew. Chem. Suppl. 1982, 675.
- 7) H.-J. Bestmann, W. Stransky und O. Vostrowsky, Chem. Ber. 109, 1694 (1976).
- 8) Die Umsetzung von 4 mit 5 wird unter Verwendung eines hochtourigen Misch- und Dispergiergeräts durchgeführt, vgl. Lit. 6).
- 9) Sämtliche Produkte 6 lassen sich leicht aus dem Reaktionsgemisch abtrennen und durch Säulenchromatographie (Kieselgel 60 (Merck)) bzw. Destillation oder Kristallisation reinigen und ergeben die erwarteten IR- und 1H-NMR-Spektren.
- 10) a) C. Engler, Ber. Dtsch. Chem. Ges. 27, 1784 (1894); b) A. Kaufmann, P. Dändliker und H. Burkhardt, Chem. Ber. 46, 2929 (1913); c) E. Regel und K.-H. Büchel, Liebigs Ann. Chem. 1977, 145.
- 11) Selbst in den Reaktionsrohprodukten lassen sich (¹H-NMR-spektroskopisch) in allen untersuchten Fällen nur die C2-Substitutionsprodukte 6 nachweisen.